Conservation of mass

Chemical equations obey the law of conservation of mass.
This is because chemical equations balance the number of atoms present in the beginning of a chemical reaction (reactants) with those that are present at the end of a chemical reaction (products).

Cracking the code

Ammonia has the chemical formula NH_{3}.
 It has $\mathrm{N}=1$ and $\mathrm{H}=3$ atoms

Writing $2 \mathrm{NH}_{3}$ means two molecules of ammonia

So $2 \mathrm{NH}_{3}$ means $\mathrm{N}=2$ and $\mathrm{H}=6$ atoms

Unbalanced chemical equation
Here the fuel is methane, CH_{4}

fuel + oxygen \rightarrow carbon dioxide + water

REACTANTS

$$
C=1
$$

$\mathrm{H}=4$
$\mathrm{O}=2$

PRODUCTS
$C=1$
H = 2
$0=3$

Balanced chemical equation
fuel + oxygen \rightarrow carbon dioxide + water

PRODUCTS
$C=1$
$C=1$
$\mathrm{H}=4$
$\mathrm{O}=4$
$\mathrm{O}=4$

When fuels burn they react with the oxygen in the air.
If there is an abundance of air, then complete combustion will take place. This means carbon dioxide and water are produced.

If there is not enough oxygen in the air available, then incomplete combustion happens and carbon monoxide and water are made.

Complete combustion

fuel + oxygen (abundant) \rightarrow carbon dioxide + water
Incomplete combustion
fuel + oxygen (low levels) \rightarrow carbon dioxide + carbon monoxide + water + carbon

It is hard to balance an equation for incomplete combustion as the amount of carbon dioxide and/or carbon monoxide and/or carbon produced depends on the fuel and the amount of oxygen. However, the equation will still obey the conservation of mass.

Here the fuel is ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$

Decide whether these reactions are balanced or not? Do they show conservation of mass? Count the atoms on each side of the \rightarrow

Tick only those that show conservation of mass.

\square
$\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
\square
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
\square
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
\square
$\mathrm{C}_{6} \mathrm{H}_{14}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}+3 \mathrm{C}+7 \mathrm{H}_{2} \mathrm{O}$
$\square \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$

